



# Addressing Security and Privacy Challenges in Internet of Things

Arsalan Mosenia Postdoctoral Researcher



# Internet of Things

Enabling numerous services over the Internet Interconnection of heterogenous entities Over 50B Internet-connected devices by 2020

## Challenges & Research Directions



New architectures
Fog/Edge Computing
Unused devices

Huge amount of data
Heterogeneity
Missing records

Real-time processing
Small battery
Small storage

Security attacks
Information leakage
Security-friendly design

# Security Challenges

#### Security and privacy

- □ Existence of insecure in-market products
- □ Lack of standardization
- □ Resource constraints
- □ Unknown threats



## Potential Attackers

Attackers:

- Occasional hackers
- ✤ Cybercriminals
- Government

Attackers' Motivations:

- Controlling devices
- Stealing *sensitive* information

IoT-based systems:

- ✤ Huge amount of information
- Monitoring/automation





#### **Research** Themes



#### **Research** Themes

| IoT & CPS Security                                                                                                               |                 |                                                                                                                                        |                                             |                                                 |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|--|--|
| Unco                                                                                                                             | vering          | Development of                                                                                                                         |                                             |                                                 |  |  |
| Security/P                                                                                                                       | rivacy Flaws    | Security-friendly Systems                                                                                                              |                                             |                                                 |  |  |
| Information                                                                                                                      | Security        | Wearables &                                                                                                                            | Smart                                       | Underlying                                      |  |  |
| Leakage                                                                                                                          | Vulnerabilities | Implants                                                                                                                               | Vehicles                                    | Networks                                        |  |  |
| [IEEE TETC, 2016]       [IEEE TETC, 2017]         [IEEE TMSCS, 2017]       [ATC USENIX, 2018]         [Survey, IEEE TMSCS, 2017] |                 | [IEEE TMSCS, <b>2015</b> ]<br>[IEEE TC, <b>2017</b> ]<br>[IEEE TMSCS, <b>2017</b> ]<br>[IEEE TMSCS, <b>2017</b> ]<br>[Survey, ACM EDA, | [UbiComp, 2018]<br>[UbiComp, 2018]<br>2017] | [USENIX Sec, <b>2018</b><br>[FWC, <b>2018</b> ] |  |  |

# OpenFog Consortium



61 members strong, headquartered in 17 countries as of January 2018

#### Outline



ProCMotive: Bringing Programmability and Connectivity to Vehicles

| IoT & CPS Security     |                 |                           |          |            |  |
|------------------------|-----------------|---------------------------|----------|------------|--|
| Uncovering             |                 | Development of            |          |            |  |
| Security/Privacy Flaws |                 | Security-friendly Systems |          |            |  |
| Information            | Security        | Wearables &               | Smart    | Underlying |  |
| Leakage                | Vulnerabilities | Implants                  | Vehicles | Networks   |  |



## Location Privacy

Attacks against location privacy lead to:
advertisement, spams, or scams
disclosure of personal activities
...



Location privacy: determining *when, how, and to what extent* location data are shared

## Prior Attacks on Location Privacy

Fundamental limitations of previous attacks:

- Substantial prior knowledge of the path
- \*An attack-specific training dataset
- ♦ Very limited accuracy, e.g., less than 45%





The extent of location-related information that can be inferred from *presumably non-critical* data was <u>not</u> well-understood!

# Fundamental Challenges

A realistic privacy attack:

- Minimal prior knowledge
- \* No attack-specific training dataset
- ✤ High accuracy
- Different activities
- Robustness



PinMe may offer a promising navigation system for autonomous vehicles

#### Sources of Information



## Step 1: Dynamic Partitioning & Activity Classification











What if the user shakes the phone? **Merging** 

Activity classification (4 SVMs):

- □ Air pressure
- □ Acceleration
- □ Heading (compass)

#### Step 2: Tracking the Vehicle



#### Real-world Evaluation

- 1. Three smartphone: Galaxy S4 i9500, iPhone 6S, and iPhone 6
- 2. Two datasets:
  - Set #1: 405 data chunks collected during different activities (271 chunks for driving)
    Set #2: 3 data streams collected by 3 users (Mazda 3, Mazda CX7, Toyota Camry)



#### Results: Tracking the Vehicle



#### Results: End-to-end Evaluation



Trajectories of three different users. Starting from the left and moving to right: (a) Princeton [Galaxy S4 i9500], (b) Princeton [iPhone 6], and (c) Baltimore [iPhone 6S]



| Tracking mechanism       | #Activity | Prior | Training | OS      | Sampling | Device/Vehicle | Success      |
|--------------------------|-----------|-------|----------|---------|----------|----------------|--------------|
|                          |           | info. |          |         | freq.    | dependence     | Rate         |
| ACComplice               | 1         | Y     | Y        | Android | 30 Hz    | Y              | 10%*         |
| Han et. Al, 2012         |           |       |          | iOS     |          |                |              |
| PowerSpy                 | 1         | Y     | Y        | Android | N/A      | Y              | 45%          |
| Michalevsky et al., 2015 |           |       |          |         |          |                |              |
| Narian et al., 2016      | 1         | Ν     | N        | Android | 20-100   | Y              | 10%*         |
|                          |           |       |          |         |          |                |              |
| PinMe                    | 4         | Ν     | N        | Android | 5 Hz     | N              | <b>100</b> % |
|                          |           |       |          | iOS     |          |                |              |

## Summary and Future Work

PinMe:

- sheds light on information leakage from seemingly-benign data
- $\boldsymbol{\diamondsuit}$  offers a promising alternative to GPS

We:

- ✤ are performing a large-scale study
- started conversations with companies

#### U.S. Patent Pending

The most popular paper of IEEE Trans. Multi-scale Computing Systems, Jan. 2018 Extensive media coverage (e.g., Schneier on Security & Android Authority)

| IoT & CPS Security                   |                             |                                             |                   |                        |  |  |
|--------------------------------------|-----------------------------|---------------------------------------------|-------------------|------------------------|--|--|
| Uncovering<br>Security/Privacy Flaws |                             | Development of<br>Security-friendly Systems |                   |                        |  |  |
| Information<br>Leakage               | Security<br>Vulnerabilities | Wearables<br>Implants                       | Smart<br>Vehicles | Underlying<br>networks |  |  |
|                                      |                             |                                             |                   |                        |  |  |
|                                      |                             |                                             |                   |                        |  |  |
|                                      |                             |                                             |                   |                        |  |  |

#### State-of-the-art Vehicles

Stats:

- ♦ Over 1B vehicles, 78M vehicles sold in 2017
- ✤ Average age of vehicles > 12 years
- \* Most of them *do not* support connectivity/programmability



#### Transmitters

Shortcomings:

- 1. Unavailability of service when wireless is lost
- 2. Lack of programmability
- 3. Significant cellular data usage
- 4. Intolerable response time



#### New Vehicular Apps



Enabling data-dominant, latency-sensitive, mission-critical, and privacy-sensitive applications

#### Architectural Overview



## Design Goals





Connectivity

Vehicle-to-Cloud Vehicle-to-phone Vehicle-to-Vehicle Security

#### Privacy

#### Programmability

Cost

Access control Virtualization (containers)

Data manipulation Minimal transmission

Customized Apps Minimal transmission Low response time

#### Vehicular Add-on Middleware



## Data Collection



Enabling data collection from Built-in sensors

20-40 sensors, e.g., speed, RPM \*Add-on modules:

□ GPS receiver

Camera

□ BLE-based Sensor Tag

**R**= [{"appID": "<ID>", "appToken": <Token>, "requestType": "dataCollection"}, {"source": "vehicle", "type": "vehicle\_speed"]

**Response**= requests.post(webserver\_url, R, headers={'Content-type':'application/json'}

#### Data Collection (Cont.)



## Access Control

Policy types:

- Strict
- Context-aware (over 10 contexts)
  - 1. Location-based
  - 2. Operational (e.g., idle/moving)
    - Example: Only send controlling commands when the vehicles is not moving!
  - 3. Situational (e.g., accident)





#### Access Control (Cont.)



## Port Management

Public functions:

- ✤ Dongle isolation
- Congestion control (rate adjustment)
- Probing



#### Case Study I: Insurance Monitor

Usage-based insurance plans offer very low rates!

However, their acceptance is limited:

- ✤ Security
  - □ Injecting commands [Savage et al.,2015]
  - Denial-of-service attacks
- ✤ Privacy
  - □ Reading the vehicle's private data
  - □ Tracking the vehicle [Gao et al., 2014]



## Case Study I: Insurance Monitor

Security:

- ✤ Access control
  - Dongle can only <u>**read**</u> speed
- Port management
  - Behavioral analysis
    - Statistical analysis
    - Learning the profile

- Privacy:
  - Port management
    - Data manipulation

Example: Noise addition





# Results: Prevention of Command Injection

#### Legitimate requests:

□ 100 requests (querying speed data) with the frequency of 1 → forwards all requests to the vehicle ✓

✤ Illegitimate requests:

 $\Box$  100 attempts to query other data  $\rightarrow$  requests are dropped  $\checkmark$ 

 $\Box$  100 queries with a high frequency  $\rightarrow$  puts requests in a queue  $\checkmark$ 

#### Case Study II: Experimental Results (Cont.)

Enhancing privacy: (i) shuffling, (iii) shuffling & rounding, (iii) noise addition

Noise addition:  $V_i = V_i + Z_i$ , where  $Z_i$  drawn from a uniform distribution with the range of R



Utility= No. of Speed Violations (Speed >30mph)

# Case Study II: Amber Response

Stats:

43 children have been recovered every year 800,000 children are abducted in the U.S. every year



# Case Study II: Amber Response (Cont.)

Three implementations:

- Cloud-based: On-cloud plate recognition
- SmartCore-based: Local plate recognition
- Hybrid: Plate area detection and color detection on SmartCore



#### ProCMotive can revolutionize vehicular industry

UbiComp 2018 U.S. Provisional Patent Innovation Award (2017), IP Accelerator Award (2018)



# Thank you!

