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In recent years, numerous vehicular technologies, e.g., cruise control and steering assistant, have been proposed and
deployed to improve the driving experience, passenger safety, and vehicle performance. Despite the existence of several
novel vehicular applications in the literature, there still exists a signi�cant gap between resources needed for a variety of
vehicular (in particular, data-dominant, latency-sensitive, and computationally-heavy) applications and the capabilities of
already-in-market vehicles. To address this gap, di�erent smartphone-/Cloud-based approaches have been proposed that
utilize the external computational/storage resources to enable new applications. However, their acceptance and application
domain are still very limited due to programability, wireless connectivity, and performance limitations, along with several
security/privacy concerns.

In this paper, we present a novel reference architecture that can potentially enable rapid development of various vehicular
applications while addressing shortcomings of smartphone-/Cloud-based approaches. �e architecture is formed around a core
component, called SmartCore, a privacy/security-friendly programmable dongle that brings general-purpose computational and
storage resources to the vehicle and hosts in-vehicle applications. Based on the proposed architecture, we develop an application
development framework for vehicles, that we call ProCMotive. ProCMotive enables developers to build customized vehicular
applications along the Cloud-to-edge continuum, i.e., di�erent functions of an application can be distributed across SmartCore,
the user’s personal devices, and the Cloud.

In order to highlight potential bene�ts that the framework provides, we design and develop two di�erent vehicular
applications based on ProCMotive, namely, Amber Response and Insurance Monitor. We evaluate these applications using
real-world data and compare them with state-of-the-art technologies.
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1 INTRODUCTION
Rapid technological advances in sensing, signal processing, low-power electronics, and wireless networking are
revolutionizing vehicle industry. To enhance the driving experience, passenger safety, and vehicle performance,
numerous vehicular technologies have been suggested and partially deployed in recent years. For example,
steering assistance and cruise control have been already integrated into state-of-the-art vehicles, and vision-based
collision avoidance [46, 52] and sign detection [42, 43] have shown promising results and garnered ever-increasing
a�ention from vehicle manufacturers. However, there still exists a signi�cant gap between resources needed for
a variety of vehicular (in particular, data-dominant, latency-sensitive, and computationally-heavy) applications
and the capabilities of already-in-market vehicles [38, 47].

A few vehicle manufacturers (for example, Tesla and Toyota) and several third-party companies have explored
di�erent solutions to partially address the above-mentioned gap by utilizing external computational power and
storage resources provided by either the Cloud or the user’s smartphone. Manufacturers have started adding
built-in Cloud-based services, e.g., radio, navigation, and so�ware updates, to their state-of-the-art products. �ird-
party companies have o�ered di�erent dongles that can be a�ached to the vehicle and gather various types of data
from On-board Diagnostics (OBD) port, which provides a direct access to various sensors and built-in components.
Such dongles collect and transmit data (with minimal on-dongle processing) to smartphone or the Cloud (either
directly or through the smartphone) for further processing. �e majority of OBD-connected products support
a single or a small set of very basic service(s), such as locking/unlocking doors or closing/opening windows.
Recently, a few companies (for example, Mojio [10]) have introduced new approaches to support multiple
applications using a single OBD-connected dongle. Such a dongle transmits raw data to the smartphone/Cloud
and enables developers to build on-smartphone or on-Cloud applications, however, it does not o�er in-vehicle
processing due to resource limitations.

Despite advantages that on-smartphone or on-Cloud (either manufacturer-enabled or dongle-based) applica-
tions o�er, their acceptance and application domain are still very limited due to four fundamental reasons (see
Section 2.1 for further discussions):
1. Lack of programability: Typically, vehicle manufacturers do not allow third-party developers to build
customized vehicular applications at all or o�er limited APIs, e.g., only for entertainment technologies. Vehicles
currently have several embedded systems, commonly referred to as Electronic Control Units (ECUs). However,
ECUs are designed for and optimized to support basic vehicular operations, such as anti-lock braking system and
adaptive cruise control, and are not capable of handling customized applications.
2. Drawbacks of wireless connectivity: Vehicle-to-Cloud/smartphone connectivity is not reliable for several
(e.g., safety-related) applications due to its potential unavailability and intolerable round-trip delay time. Further-
more, transmi�ing the huge amount of data needed for data-dominant applications, e.g., tra�c sign detection is
not cost-e�cient.
3. Performance limitations: Several applications must o�er a real-time response, and thus, require in-vehicle
processing. Dongles and built-in computing units have limited resources and cannot host computational-heavy
applications. Users’ smartphones may o�er extra resources, however, imposing computational-heavy operations
to them signi�cantly increases their power consumption, leading to user inconvenience.
4. Public security/privacy concerns: Add-on dongles do not use strong security mechanisms due to resource
constraints, and as a result, they su�er from several security a�acks, e.g., the a�acker can remotely disable
the breaking system [9]. Furthermore, third-party dongles can transmit a variety of private information to the
Cloud, and thus, their introduction has led to public privacy concerns [7, 18, 29]. For example, Elastic Pathing
[29], published in Ubicomp 2014, has shed lights on how insurance companies can infer the user’s location by
processing the vehicle’s speed.
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We envision an interoperable add-on solution (i.e., solution that imposes minimal design modi�cation to
vehicle manufacturers and third-party vehicular companies) as key to enabling a proactive approach to o�er
new vehicular applications. As discussed later in Section 2, an in-vehicle programmable add-on, that imposes
no design change to the vehicle, can o�er a holistic solution to address the above-mentioned shortcomings
of previous smartphone-/Cloud-based services. In this paper, we present a novel reference architecture for
vehicular application development that relies on four fundamental components: (i) SmartCore, a privacy/security-
friendly programmable OBD-connected dongle that can host multiple applications in the vehicle, (ii) the user’s
personal devices that provide additional resource to applications running on SmartCore and/or enable the
user to control them (via a graphical user interface), (iii) Cloud servers, which provide extra resources, keep
application installation packages, and o�er remote so�ware update, and (iv) add-on modules that enable adding
extra input/output devices and computational/storage units to SmartCore if needed. Based on this architecture,
we propose an application development framework for vehicles, called ProCMotive, which enables developers and
researchers to rapidly prototype and deploy customized vehicular applications.

SmartCore is the core component of ProCMotive and aims to partially push computational/storage resources
from the Cloud to the vehicle. In particular, it:

• a�aches to the OBD port and replicates a similar interface for third-party dongles. �is ensures interop-
erability, i.e., a�er adding SmartCore, both the vehicle and previously-designed OBD dongles can resume
their regular functionalities.
• potentially enables the development of various novel (in particular, latency-sensitive and data-dominant)

vehicular third-party applications. It exploits its in-vehicle computational/storage resources to either fully
host lightweight latency-sensitive applications or partially implement data-dominant and computationally-
heavy applications.
• acts as a gateway for third-party OBD-connected dongles. It enables real-time monitoring of other

OBD-connected dongles to detect and address any malicious activities (e.g., launching a denial-of-service
a�ack or stealing private information) initiated by them.
• o�ers a context-aware access control scheme that enables the user to decide what information he wants

to share with each in-vehicle application or OBD-connected dongle with respect to the current context.
• implements a set of privacy-friendly data manipulation functions that aim to minimize the amount of

private information leakage by removing inessential parts of data before sharing them with third-party
applications and untrusted OBD-connected dongles.

Our key contributions can be summarized as follows:
(1) We discuss fundamental shortcomings of existing OBD-based add-ons and brie�y describe how the

proposed approach intends to address them. Furthermore, we suggest a list of additional goals for
ProCMotive and justify why each goal is desired.

(2) We present a reference architecture that comprehensively speci�es the functionalities and communication
capabilities of its fundamental components (SmartCore, the user’s personal devices, Cloud servers, and
add-on modules). �is architecture has been proposed to address shortcomings of previous OBD-based
approaches, while taking suggested design goals into account.

(3) Based on the reference architecture, we design and implement an application development framework
that enables developers/researchers to build new vehicular applications.

(4) Using the prototype implementation of ProCMotive, we design and implement two vehicular applications,
namely, Amber Response and Insurance Monitor, which are either completely or partially hosted on
SmartCore.

(5) We evaluate the applications using real-world data and comprehensively compare them with the state-of-
the-art technologies.
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�e rest of this paper is organized as follows. Section 2 describes shortcomings of previous smartphone-/Cloud-
based approaches, discusses how ProCMotive addresses them, and provides the additional design goals. Section
3 presents the reference architecture. Section 4 explains how we have designed and developed a prototype of
ProCMotive based on the reference architecture. Section 5 describes two novel applications that we have proposed
and implemented based on ProCMotive and evaluates them. Section 6 discusses the related work. Eventually,
Section 7 concludes the paper.

2 DESIGN CONSIDERATIONS
In this section, we �rst discuss common shortcomings of previous smartphone-/Cloud-based approaches in detail
and brie�y discuss how ProCMotive aims to address them. Second, we describe additional design goals, that we
considered while designing ProCMotive, and the rationale behind each of them.

2.1 Addressing shortcomings of previous approaches
As brie�y mentioned in Section 1, previous approaches have several shortcomings that limit their scope of
applications and acceptance. Next, we describe these limitations in more detail and discuss how ProCMotive
addresses them.

2.1.1 Lack of programability. State-of-the-art vehicles utilize a compound of ECUs and on-board buses. �ey
incorporate several (up to 100) ECUs, which host vehicle-speci�c so�ware. ECUs provide in-vehicle resources
to enables a variety of basic vehicular operations, such as anti-lock braking system and adaptive cruise control
[48]. Vehicle manufactures have supported ECUs programming and tuning to enhance the vehicle performance
even a�er its initial sale or �x so�ware bugs if needed [5]. However, these built-in computational resources
do not o�er the �exibility provided by general-purpose computing units: they cannot be easily reprogrammed
to host third-party vehicular applications. �is limitation has been imposed by manufacturers to ensure the
quality of service (QoS) and reliability of critical (in particular, safety-related) operations handled by ECUs.
�erefore, despite the existence of in-vehicle computational resources, utilizing them to implement customized
vehicular applications is neither simple nor recommended. Some manufacturers have started o�ering APIs to
application developers, however, these APIs are very limited and only target a small application domain, in
particular entertainment applications.
How does ProCMotive enable programability? In the proposed architecture, SmartCore brings extra computa-
tional resources to the vehicle, o�ering a platform that can be used to host a variety of vehicular applications.
Since SmartCore is connected to the OBD port, it can access several types of sensory data collected by the
vehicle’s built-in sensors and communicate with ECUs if necessary.

2.1.2 Drawbacks of wireless connectivity. Here, we discuss the issues associated with the use of vehicle-to-
Cloud and vehicle-to-smartphone wireless connectivity.
1. Unavailability of wireless connectivity: Using cellular connectivity to transmit the data from the vehicle
to the Cloud will result in the unavailability of the Cloud-based services when the cellular connectivity is not
available, for example, when the vehicle goes through a tunnel. Furthermore, if a dongle uses the smartphone
to transmit the data to the Cloud, both vehicle-to-smartphone and vehicle-to-Cloud communications become
unavailable when the smartphone dies. �ese will result in the interruption of vehicular services, and signi�cantly
limit their applicability. In particular, safety-related applications that need a reliable continuous stream of data,
e.g., collision detection and security a�ack detection, cannot completely rely on wireless connectivity. �us, such
applications should be implemented (at least partially) on the vehicle itself.
2. Intolerable response time: Several vehicular applications need real-time decision making, for example,
tra�c sign detection and collision prediction, and therefore, may not tolerate the response time o�ered by the
Cloud (i.e., time needed for transmi�ing the data from the vehicle to the Cloud, processing them on the Cloud, and
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ge�ing the response back from the Cloud). Such applications should be implemented using close-to-the-vehicle
computational/storage resources.
3. Limited cellular data and bandwidth: Data-dominant applications (in particular, image processing-based
collision detection or a sign detection algorithm) capture and process a huge amount of data (up to tens of
GBs of data every day). For such applications, transmi�ing the raw data to the Cloud is not cost-e�cient as
demonstrated later in Section 5.1.2. Moreover, if each data chunk is huge (e.g., a high-resolution image collected
from an on-vehicles camera), sending it to the Cloud or the user’s smartphone may be time consuming, leading
to an intolerable end-to-end application response time.
How does ProCMotive address drawbacks of wireless connectivity? Additional resources o�ered by Smart-
Core enables developers to implement applications (either partially or completely) on SmartCore, minimizing
the need of using wireless connectivity for data transmission. ProCMotive enables application developers to
implement their applications along vehicle-to-Cloud continuum by simultaneously utilizing resources available
on SmartCore, nearby personal devices, and the Cloud. Close-to-the-user devices can process a huge amount of
data without accessing Cloud resources and only transmit the data over the Internet if necessary.

2.1.3 Performance limitations. Several applications must o�er real-time responses, and thus, require in-
vehicle processing. Already-in-market dongles and built-in computing units have limited resources and cannot
host computational-heavy applications. Users’ smartphones may o�er extra resources, however, imposing
computational-heavy operations to them signi�cantly increases their power consumption, leading to user
inconvenience.
How does ProCMotive resolve performance limitations? SmartCore brings additional computational/storage
resources to the vehicle. Moreover, it minimizes data transmission overheads associated with the use of
smartphone-/Cloud-based services since it enables local computation on the data. �ese enable the imple-
mentation of a variety of low-latency/real-time applications on SmartCore. Indeed, SmartCore can run such
applications with partially (or even without) utilizing either the user’s smartphone or the Cloud.

2.1.4 Public security/privacy concerns. Here, we discuss security and privacy concerns of previously-proposed
approaches.
1. Security threats: Vehicles are interesting targets for a�ackers due to their mission-critical operations. Any
security a�ack against vehicles, especially large-scale a�acks, may lead to life-threatening consequences. As
further discussed later in Section 5.2, the federally-mandated OBD port o�ers an unprotected standard interface
that can be exploited by a�ackers to take the control of mission-critical components, e.g., braking system. It
has been shown that a�ackers can launch a multitude of well-known security a�acks against the vehicles using
OBD port, ranging from Denial of Service (DoS) a�acks to packet sni�ng [35]. Several already-in-market OBD
dongles are vulnerable to well-known security a�acks, o�ering a valuable opportunity for a�ackers to remotely
take the control of several components embedded in the vehicle [18].
2. Private information leakage: Since OBD interface o�ers a full access to all OBD-connected dongles, they
can potentially collect a variety of sensitive information (e.g., sensory readings, GPS coordinates, and the vehicle’s
identi�cation number and model) without the user’s permission, leading to several privacy concerns [29, 44]. It
has been shown that an insurance company can potentially track all user movements (and also extract several
locations of interest) using the vehicle’s speed collected from OBD port [29].
How does ProCMotive enhance security/privacy? SmartCore o�ers su�cient in-vehicle resources to support
strong cryptography mechanism (for example, Advanced Encryption Standard encryption [27]) needed for
protecting wireless communications to/from the vehicle, limiting remote wireless a�acks. Moreover, it acts as
a gateway that monitors the behavior (e.g., the rate and type of requests) of other OBD-connected dongles to
detect and block malicious activities initiated from them. To address privacy concerns, ProCMotive enables two
solutions. It o�ers context-aware access control that enables the user to decide when, where, to what extent,
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and under what conditions, he wants to share the data collected from OBD with other OBD-connected dongles.
Moreover, it implements a set of functions (referred to as privacy-enhancing functions) that manipulate the raw
data before sharing it with third-party dongles or applications.

2.2 Additional design goals
2.2.1 Interoperability. As mentioned in Section 1, SmartCore acts as a gateway for other third-party OBD-

connected dongles. It connects to the OBD port and replicates a similar interface that can be used by other
third-party OBD-based devices, e.g., insurance dongles. Such devices can send their requests to the OBD port
only through SmartCore, while SmartCore is actively enforcing appropriate security and privacy policies. �is
ensures interoperability: if an OBD-based dongle complies with the policies, it can perform its regular operations
without any design modi�cation, despite the a�achment of SmartCore to the OBD. Interoperability is essential to
minimize the additional costs associated with the use of ProCMotive and maximize its acceptance.

2.2.2 Extensibility. It is desired to implement ProCMotive so that its application domain can be extended
in future with minimal design modi�cations. SmartCore o�ers short-range wireless connectivity (Bluetooth
and WiFi), along with several Universal Serial Bus (USB) ports, so that additional input/output, storage, and
computing devices can be easily added to the architecture if needed. For example, developers can process the
sensory data gathered from the vehicle, along with data collected using add-on input devices (e.g., a camera), to
design and develop novel vehicular applications.

2.2.3 Virtualization. Virtualization, i.e., creating multiple isolated containers to host di�erent applications
on the same operating system (OS), is highly desired to ensure the security. A containers is an abstraction at
the application layer that maintains application packages (i.e., codes and their dependencies). SmartCore hosts
several third-party applications at the same time, and it uses a separate container for each application. �is
ensures that an application can neither see nor a�ect applications running in other containers. Moreover, each
container has its own network stack, and therefore, it does not have privileged access to the sockets or interfaces
of another container [39].

2.2.4 Remote update. To enhance the performance and security and provide regular �xes for features that
are not working as intended, it is essential to o�er remote so�ware update. To ensure user convenience, an
over-the-Internet remote update is highly desired. In ProCMotive, Cloud servers will host so�ware updates (e.g.,
the latest version of applications, middleware, and OS) and regularly inform the user if a new update is available.

3 THE REFERENCE ARCHITECTURE
In this section, we present an architectural overview of ProCMotive. �e proposed architecture is motivated by the
insight that close-to-the-user computation can open up new opportunities for addressing various security/privacy
concerns associated with the use of Internet-connected vehicles, enhancing the performance of vehicular applications,
and enabling new applications that were not feasible before using previous architectures. Fig. 1 presents the proposed
reference architecture. As illustrated in this �gure, ProCMotive consists of four main components, namely
SmartCore, personal devices, Cloud servers, and add-on modules. �ese components can communicate with each
other via various communication channels. To ensure security, in this architecture, all communication channels
(expect OBD-based channels that are implemented based on a federally-mandated guideline) can be encrypted.
Next, we describe di�erent components of the reference architecture.

3.1 SmartCore
SmartCore is an OBD-connected dongle that brings su�cient computational power and storage capacity to the
vehicle to support several fundamental operations. In the proposed architecture, SmartCore is connected to the
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Add-on modules

SmartCore

Third-party OBD devices

Cloud servers

OBD 
interface

Personal devices

Fig. 1. An architectural overview of ProCMotive: it consists of SmartCore, personal devices, Cloud servers, and add-on
modules. To ensure security, in this architecture, all communication channels (expect OBD-based links) should be encrypted.

OBD port for two main reasons. First, it can access various types of sensory (e.g., coolant temperature, engine
RPM, ambient temperature), and non-sensory data (e.g., GPS coordinates, the vehicle’s make and model) from the
vehicle. Second, it can be powered through this port by accessing the vehicle’s ba�ery. Next, we list and brie�y
describe the fundamental operations of SmartCore.

3.1.1 Data collection. SmartCore can collect data needed for various vehicular applications from two main
sources: the sensors embedded in the vehicle and add-on sensors. OBD interface enables the SmartCore to access
various built-in components including sensors. SmartCore can request di�erent sensory data by sending their
corresponding diagnostics parameter IDs (PIDs), which are supported by vehicle manufacturers to facilitate
diagnostics. Moreover, add-on input sensors can be connected to SmartCore over WiFi or Bluetooth, providing
additional information about the environment.

3.1.2 On-vehicle data processing. SmartCore has su�cient resources to perform a wide range of data processing
(in particular, privacy-enhancing, data compression, and data analytics) algorithms in the vehicle. Depending
on the available resources, performance requirements, and QoS guarantees, applications can be partially/fully
implemented on SmartCore. In-vehicle processing opens up a new opportunity for developing several new
applications. For example, consider a sign detection algorithm that aims to recognize the tra�c signs by processing
the images captured from the environment. If the vehicle manufacturer does not support this application by
default, incorporating it into already-in-market vehicles is not feasible due to the shortcomings of previously-
proposed architectures as described in Section 2. However, SmartCore enables in-vehicle image processing for
such an application, minimizing the vehicle-to-Cloud transmission overhead and o�ering short response time.
Moreover, as demonstrated later in Section 5, it can be used to implement privacy-enhancing algorithms that
remove inessential portions of raw data (e.g., the whole image) before transmi�ing it to the Cloud or sharing it
with other OBD-connected devices, e.g., insurance dongles.
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3.1.3 Access control. While various access control schemes have been proposed for personal devices (smart-
phones and tablets) [24, 26, 41], they have been neither well-established nor well-studied in the domain of
Internet-connected vehicles and vehicular applications. �e OBD protocol itself does not o�er any access control
solution to specify when, where, and to what extent the sensitive data can be gathered from the OBD. In order to
prevent forming a monopoly in the auto repair business, vehicles manufacturers are mandated by law to provide
full access to built-in components via OBD port. Although OBD-connected dongles can access various sensors
and components embedded in the vehicle to enable new vehicular applications, their usage can lead to serious
security and privacy concerns if their access level is not limited. SmartCore o�ers an access control scheme
to limit the access level of (i) applications hosted on the SmartCore and (ii) third-party OBD-based dongles.
It continuously monitors the behaviors of hosted applications and third-party dongles and ensures that they
comply with a set of access control policies. SmartCore supports two types of policies: prede�ned policies and
context-aware user-de�ned policies, as described next.
Prede�ned policies: Upon the installation of an application or the a�achment of a new dongle to SmartCore, a
set of prede�ned policies are assigned to the application/dongle. �ese set of policies are determined based on two
parameters: the vehicle’s speci�cations (e.g., vehicles’ manufacturer, make, and model) and the speci�cation of
the application/dongle (e.g., the application’s intentions or the manufacturer/model of the dongle). �e vehicle’s
speci�cation can be directly obtained from the OBD port. It is used to take the vehicle’s manufacturer-reported
OBD issues and speci�c characteristics into account. For example, the a�achment of any OBD dongle to a
Ferrari 430 will disable its Traction Control System [4]. �us, for this vehicle, the default access level of applica-
tions/dongles should ensure that the OBD port cannot be accessed when the car is moving. �e speci�cation of
the application/dongle is used to determine its expected access level based on its intended operations. For example,
it is su�cient for an insurance dongle to only access a subset of the vehicle’s sensors, e.g., the speedometer and
odometer.
Context-aware user-de�ned policies: Although prede�ned policies provide basic protection against di�erent
security/privacy a�acks, it is unlikely that the their privacy and security implications would be fully understood
by regular users. Indeed, users commonly under-/over-estimate the level of protection that these policies pro-
vide [41]. To take users’ preferences into account, we included a domain-speci�c context-aware access control
scheme in SmartCore. Context-aware user-de�ned policies o�er the potential to correctly re�ect the user’s
security/privacy preferences. However, if it is not user-friendly, the amount of essential user e�ort needed
to initialize, modify, and maintain a comprehensive set of context-dependent policies is high [41]. A rich set
of contexts enables the user to de�ne �ne-grained policies, however, it is well-known that regular users are
not willing to spend signi�cant amounts of time to adjust the policies with their preferences. In addition, it is
questionable, whether users are capable of understanding the implications of their policy se�ings [41]. �us, it is
desired that SmartCore o�ers a user-friendly policy managements system, while enabling users to de�ne/modify
various policies with respect to a rich set of domain-speci�c high-level contexts (e.g., whether the vehicle is
involved in an accident).

3.1.4 OBD port management. In order to enable real-time monitoring of other OBD-based third-party dongles,
such dongles are only allowed to indirectly access OBD port through the interface implemented by SmartCore.
SmartCore should isolate third-party OBD-based dongles (i.e., they can neither directly communicate with
the vehicle’s OBD port nor see each other), monitor and process commands/message initiated from them, and
responds to such commands/message (with respect to certain security/privacy policies speci�ed by the access
control scheme). Port management enables this isolation and handles requests sent to or received from the
vehicle’s OBD port.
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3.2 Personal devices
Modern personal devices (e.g., smartphones and tablets) have become a vital part of our everyday lives. �ey are
equipped with many compact built-in sensors (e.g., accelerometers, magnetometers, and barometers), various
communication capabilities (e.g., WiFi, LTE, and Bluetooth), powerful microprocessors, and high-volume storage
in order to support a variety of applications [44]. In addition to enabling such applications, their spare resources
can be potentially utilized to o�er additional resources (e.g., computational power) and inputs/outputs (e.g., sensors)
to applications running on SmartCore. For example, if a developer wants to build an automatic headlight control
application (i.e., an application that can automatically turn on the vehicle’s headlights based on the existing
ambient light) on a vehicle that does not support this functionality. He can potentially utilize the ambient light
sensor embedded in the user’s smartphone to sense the ambient light and then launch appropriate controlling
commands to control the vehicle’s headlight using SmartCore. Furthermore, its display can o�er a user-friendly
interface, which can be used to control various functionalities of SmartCore, as further described later in Section
4.1.3.

3.3 Cloud servers
In the proposed architecture, Cloud servers are envisioned to have three fundamental responsibilities: (i) maintain-
ing application packages, (ii) o�ering additional computational/storage resources that can be used to partially/fully
implement an application on the Cloud, and (iii) enabling remote update of the so�ware, in particular, applications
installed on SmartCore, and the underlying middleware and/or OS.

3.4 Add-on modules
�ese modules are either additional input/output devices (e.g., camera and sensors) or computing/storage units
that can be connected to SmartCore via WiFi, Bluetooth, or wired connectivity. For example, a vehicle-mounted
camera can gather valuable information about the vehicle’s surroundings, enabling a variety of image processing-
based applications. In Section 5, we discuss an instance of novel applications that can be enabled using an add-on
module, a vehicle-mounted camera. In the proposed architecture, add-on modules o�er extensibility.

4 PROTOTYPE IMPLEMENTATION
Based on the proposed reference architecture and intended operations of its components, we designed and
developed a prototype for ProCMotive. �e prototype implementation o�ers a framework that provides the
backbone for vehicular application development, considering various domain-speci�c challenges: programability,
wireless connectivity, and performance shortcomings, along with security/privacy concerns. Next, we discuss
the implemented so�ware components and underlying hardware/infrastructure.

4.1 So�ware components
�e prototype implementation consists of three main so�ware components: (i) CARWare a middleware (i.e.,
a so�ware that acts as a bridge between the native OS and applications) that enables SmartCore’s intended
operations, (ii) an Android application that enables the user to control di�erent vehicular applications and manage
access control policies using his smartphone, and (iii) a trusted web server on the Cloud that enables the user to
download/update vehicular application packages. Next, we discuss these components in detail.

4.1.1 CARWare: The core middleware. As the core of reference architecture, SmartCore o�ers several func-
tionalities. We have designed and implemented CARWare to enable the intended functionalities of SmartCore
discussed earlier in Section 3. CARWare comes between the native OS (Raspbian [16] in our prototype) and the
application layer (Fig. 2). It enables remote update, data collection (from both OBD port and add-on inputs),
application management, OBD port management, and access control and provides a RESTFul API through which
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it handles various requests created by applications and returns a response in JSON format (i.e., an open-standard
�le format that uses human-readable text). Next, we describe the supported functionalities of CARWare and
brie�y describe the APIs that it provides.

Raspbian

Access 
control

Port 
management

Application 
management

Data
collection

Update
management
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Fig. 2. CARWare: The middleware comes between the OS and the application layer and provides various APIs for update
management, data collection, application management, port management, and access control, which can be accessed through
its Flask-based web server.

Update management: �e update management provides various functions needed for remotely updating
application packages and the CARWare. In our prototype, we have used the full functionally of API to develop a
trusted Android application (with administrative privileges) that can download, install, and run the last version of
application packages and CARWare stored on the Cloud if an update is necessary. Although update management
enables updating both applications and CARWare, for third-party applications, its API is very limited: it only
enables such applications to update themselves. For security reasons, we do not allow a third-party application
to neither update other applications nor CARWare.
Data collection: CARWare o�ers an API that can be used to facilitate data collection from the vehicle’s sensors
and SmartCore’s add-on inputs. �e current implementation of the API enables accessing over 30 types of the sen-
sory data from the vehicle, along with di�erent types of data provided by three add-on inputs: a vehicle-mounted
camera (Raspberry Camera Module V2 [15]), a set of sensors (TI Sensor Tag [19] that has built-in accelerometer,
magnetometer, temperature, and air pressure sensors and is connected to SmartCore via Bluetooth Low Energy),
and a GPS receiver (USGlobalSat GPS receiver [8]). In order to fetch sensory data, the vehicular application,
that runs in a container, communicates with the web server running within CARWare. For data collection, the
application creates a request including its unique credentials (an application identi�er and a token) along with
the description of data that are needed (for each data type, the request includes two �elds: source of data, i.e.,
from the ’vehicle’ or ’add-on’ inputs, and type of data, e.g., acceleration or engine RPM). Upon the arrival of a
request, CARWare �rst checks if the request complies with access control policies. If so, it reaches the requested
data source, collects the data, and returns a response including the data (in JSON format) to the application.
Otherwise, it rejects the request.
Application management: In-vehicle application hosting requires �ne-grained application management. Ap-
plication management enables the user to (use an Android application developed based on its API and) download
a vehicular application from Cloud server to the SmartCore, run the application (inside a container separated
from other applications), pause all processes involved in the application, and completely halt the application.
Using containers allows independent isolated applications to run simultaneously within a single OS, avoiding the
overhead of starting and maintaining several virtual machines. In our prototype, we utilize Docker technology
[39] to create our isolated containers. Docker is one of the world’s leading so�ware container platform that
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facilities the repetitive tasks of building containers and con�guring development environments [22].
Port management: CARWare o�ers an API to enable applications to control the OBD port if needed. In par-
ticular, it provides four functions: port block, rate adjustment, probing a dongle, and sending a request. Using
port management, an application can (i) block all requests coming from an OBD-connected dongle (given its
unique identi�er), (ii) set the maximum expected rate of OBD requests initiated from an application/dongle, (iii)
capture/monitor all the packets initiated from a dongle, and (iv) create and transmit an arbitrary OBD request.
As demonstrated later in Section 5, using this API, developers can easily design security/privacy protection
applications, which can take the control of OBD port upon detection of a malicious activity.
Access control: �e access control component consists of three subsystems: policy management, policy enforce-
ment, and context recognition that closely collaborate with each other (Fig. 3):

Context
recognition

Policy
management

Policy enforcement

API

RequestRequest

DongleApplication

OBD 
port

Sensor 
Tag 

Policies

Fig. 3. The access control component consists of three subsystems: policy management, policy enforcement, and context
recognition

1. Policy management: �is subsystem is responsible for ge�ing the feedback from the user and enabling the
user to enforce his security/privacy preferences. It provides an API which can be used to add, edit, and remove
context-aware user-de�ned policies for each application or third-party dongle a�ached to SmartCore.
2. Policy enforcement: It ensures that all applications and third-party OBD dongles always comply with both
prede�ned and user-de�ned policies. For each request generated from an application or dongle, if the request is
authorized, it lets the request to proceed; otherwise, it blocks the request, i.e., the request is neither processed by
SmartCore nor forwarded to the OBD port.
3. Context recognition: Context recognition supports a list of contextual information (it continuously detects the
current contexts), enabling the user to set his preferences with respect to this information. Next, we describe
di�erent type of contextual information supported in the prototype.
Operational contexts: In the prototype, the context recognition supports two contextual information related
to the operation of the vehicle: vehicle status and health status. It continuously detects whether the vehicle is
idle or moving. �is allows the user to limit applications/dongles based on the current status of the vehicle. For
example, the user can set a policy to disable all diagnostic OBD dongles (that may send safety-critical commands
to the vehicle) when the vehicle is moving. �is can potentially prevent several life-threatening security a�acks
(e.g., disabling the braking system [9]) even if the dongle is hacked and can be controlled by a remote a�acker.
Moreover, it detects the engine’s health status (e.g., checks whether the check engine light is on/o�). Several
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insurance companies, e.g., MetroMile [11], o�er dongles that are also able to read all in-vehicle data, �nd fault
codes, and describe how the user can address the issue. By se�ing policies based on the health status, the user
can allow such dongles to only access diagnostic data upon the appearance of a fault.
Situational contexts: In the prototype, two types of situational contexts are de�ned: involvement in an emergency
and the presence of an external alert message. Context recognition frequently collects data from sensors embedded
in TI Sensor Tag [19], e.g., accelerometers, and on-vehicle sensors, e.g., ABS and airbag sensors, to detect the
occurrence of a collision. Moreover, it listens to a trusted communication channel through which trusted alert
messages (e.g., from law enforcement) are transmi�ed to the vehicle. �is enables the user to set situational
policies. For example, a user may be willing to give an insurance dongle the permission to transmit the location
of an accident to the company. Similarly, he may want to allow emergency responders to access his location
information when it is asked by a law enforcement agency (see Section 5 for an application, called Amber Alert,
that needs this type of permission).
Location-based contexts: �ere are di�erent scenarios in which the user might like to control the access level
of the application/dongle with respect to the current location of the vehicle. For example, the user may be willing
to share some information with applications/dongles only when he is in trusted locations. Furthermore, he
might want to stop sharing his sensitive information (e.g., GPS coordinates) when he is in speci�c locations (e.g.,
his home or o�ce). �e current prototype implementation lets the user to set policies with respect to a set of
locations of interest: user-de�ned locations (home and o�ce addresses) and manufacturer-trusted addresses
(locations of trusted auto repair shops).

4.1.2 Cloud server. In the prototype, ProCMotive has a trusted Cloud-based web service, called Vehicular
Application Store that is wri�en in Python based on Flask framework [30] and is hosted on Amazon Web Services
(Model t2.2xlarge [1]). It o�ers an API that can be used to: (i) list available vehicular application packages, and (ii)
download the last (or a speci�c) version of an application �les (a Docker container [39] including the application
and its dependencies along with a JSON �le describing the application and its requirements). Using the API
provided by this sever and the API provided by the update management unit of SmartCore, we developed and
Android application that allows the user to download, install, and update applications/CARWare, as described
later in Section 4.1.3.
Note: As described earlier, the Cloud has a vital role in the implementation of various vehicular applications:
it can provide extra computational/storage resources for each application. While designing di�erent vehicular
applications based on ProCMotive, we have also used additional resources of the Cloud (see Section 5 for more
detail, where we describe two vehicular applications developed based on ProCMotive).

4.1.3 Android application. Using the APIs provided by Vehicular Application Store and SmartCore, we have
implemented an Android application that communicates with both the store and SmartCore and o�ers a user-
friendly interface for managing access control policies and vehicular applications running on SmartCore:
Access control management: �e user can set, modify, delete user-de�ned access control policies. For each
vehicular application or OBD dongle, CARWare maintains an access control �le (in JSON format) that speci�es
its access control policies. �e smartphone communicates with the web server within CARWare to re�ect user
preferences and update the access control �les.
Application management: To install and run a new application, the user can select one application from the
list of available vehicular applications stored on Vehicular Application Store. When the user intends to download
and run an application on SmartCore, his request is sent from the smartphone to the web server within CARWare
and is handled as follows: the server communicates with Vehicular Application Store and fetches the application
package, it then runs the application in an isolated container. Using the smartphone application, the user can
check the status of all vehicular applications running on SmartCore and manage them (pause, halt and remove
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their containers) if needed.

4.2 The underlying hardware/infrastructure
SmartCore is implemented based on Raspberry Pi 3 that comes with Raspbian, its native Debian-based computer
OS [16]. SmartCore also utilizes two other hardware components: NETGEAR 4G LTE Modem (Model LB1120)
[13] with a T-Mobile Prepaid Plan [20] that enables wireless connectivity over LTE and OBD PiCAN 2 board [14]
that provides CAN-Bus capability for the Raspberry Pi. It currently o�ers three wireless channels: LTE, Bluetooth
Low Energy, and WiFi. Raspberry Pi has built-in cryptographic modules that support strong encryption for
these communication channels. �us, to ensure security, all communication channels to/from SmartCore can be
encrypted (except the wired OBD-based communication channels).

Furthermore, SmartCore currently supports three add-on modules: (i) TI Sensor Tag [19], a Bluetooth-enabled
sensory unit that includes various sensors such as accelerometer, magnetometer, and air pressure, (ii) Raspberry
Camera V2 [15], a vehicle-mounted camera that can capture video frames from the environment, and (iii)
USGlobalSat GPS [8] that is a GPS receiver.

We have used a Nexus 5S to test all Android applications developed in this paper and utilized Amazon Web
Services (Model t2.2xlarge [1]) as the Cloud.

5 APPLICATIONS
In this section, we propose two novel applications, which are implemented based on ProCMotive. We evaluate
these applications using real-world data and discuss how they bene�t from in-vehicle processing (SmartCore).

5.1 Application 1: Amber Response
In this section, we discuss a novel application that has been enabled by ProCMotive, which we call Amber
Response.

In the U.S., an Amber Alert is activated when a law enforcement agency has admissible reasons to believe
that a child has been abducted and he is in danger of serious life-threatening conditions or death. �e Amber
Alert system relies on the nearby people to get information about the abduction. It informs the public about
the abduction by broadcasting the make, model, color, and plate number of the abductor’s vehicle to nearby
smartphones, enabling the entire community to assist in the safe recovery of the child. It has been shown that
this scheme is only slightly e�ective and may cause user inconvenience (for example, the alert will be sent to all
nearby people even if they are not walking/driving and cannot provide useful information). Since the inception
of the program in 1996 through 2015, around 43 children, on average, have been safely recovered every year
speci�cally as a result of an AMBER Alert being issued, whereas the average number of abduction in the U.S. is
around 800,000 every year (see [2] for detailed annual statistics). �us, a more e�ective alternative system is
highly needed. We propose such a system, called Amber Response, and implement it using ProCMotive. Amber
Response utilizes a vehicle-mounted camera, that continuously captures several frames per second from the
environment, and processes image frames to automatically �nd the abductor’s vehicle (given the database of
active Amber Alerts). Di�erent functions of this application can be distributed across SmartCore and the Cloud,
as described next.

5.1.1 Prototype implementation. Amber Response application maintains a database of active Amber Alerts,
including make, model, color, and plate number of abductors’ vehicles. �is database is located on the Cloud
server and can be updated by responsible agencies. �e application searches through the video frames to �nd a
vehicle whose features match the ones of a record in the database. Upon the detection of a suspicious vehicle,
the application sends the vehicle’s GPS coordinates to the Cloud server, informing law enforcement agencies.
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Using ProCMotive, we have implemented three di�erent versions of Amber Response: (i) a Cloud-based, (ii) a
SmartCore-based, and (iii) a hybrid version that exploits both Cloud and in-vehicle computation/storage resources.
We next describe how we have implemented these three versions.
Cloud-based: In this version, SmartCore only collects the data (video frames) and uploads them to the Cloud
without modi�cation. A�er uploading the frames, an on-Cloud server receives and processes them to �nd a plate
number that matches the plate number of a suspicious vehicle in the database. We have utilized OpenALPR
library [3] to implement plate detection algorithm on the Cloud. Plate detection algorithm has eight main
steps, which are brie�y described in Table 1. Implementing the Cloud-based version of Amber Response was
potentially feasible using previously-proposed Cloud-based architectures that rely on minimal computational
power in the vehicle, and thus, the Cloud-based version can be used as a baseline to compare ProCMotive-enabled
(SmartCore-based and Hybrid) implementations with previously-presented Cloud-based proposals for connected
vehicles (e.g., Azure-based connected vehicles [12]). As described later in Section 5.1.2, despite demonstrating a
promising performance, the Cloud-based implementation cannot be utilized in real-world scenarios due to the
cost overhead associated with transmi�ing the data needed for this implementation.

Table 1. Di�erent steps of plate detection algorithm [3]

Step Description
1. Plate detection Finds potential license plate regions
2. Binarization Converts the plate image into black and white
3. Char Analysis Finds character-sized “blobs” in the plate region
4. Plate Edges Finds the edges/shape of the plate
5. Deskew Transforms the perspective to a straight-on view
6. Segmentation Isolates and cleans up the characters
7. Char Recognition Analyzes each character image
8. Post Process Creates a top N list of plate possibilities

SmartCore-based: In this version, the application installed on SmartCore frequently (e.g., every 30 seconds)
fetches the database of active Amber Alerts to ensure that it maintains the last updated version of the database.
It then captures video frames from the camera and runs the plate detection algorithm described above. A�er
extracting all plate numbers from the frames, it searches through the database to �nd a match and sends a report,
including the vehicle’s GPS coordinates, to the Cloud if a match is found.
Hybrid: �e hybrid implementation exploits both in-vehicle and on-Cloud resources. In this scenario, Amber
Response application has been partially implemented on SmartCore. On SmartCore, it �rst captures the frames
from the camera. �en, it performs a lightweight image processing function to extract all plate areas in each
frame (Step 1 in Table 1). A�erwards, for each vehicle in the frame, it estimates the vehicle’s color from a small
area above its plate (whose size is %10 of the detected plate’s area). If the vehicle’s color matches the color of one
of the suspicious vehicles reported in the database, it transmits the corresponding plate area to the Cloud for
further processing. �e on-Cloud side of the application, receives and processes the images that only contain the
area. Upon detection of a suspicious vehicle, it sends a request to the application installed on SmartCore, asks for
current location of the vehicle, and informs the law enforcement agency.

5.1.2 Evaluation. Next, we �rst describe the dataset used to evaluate Amber Response, and then examine and
compare di�erent implementations of Amber Response from three perspectives: (i) performance, (ii) cellular data
usage, and (iii) privacy leakage.
Dataset: We downloaded 12 videos uploaded on YouTube that were captured using a camera mounted behind
the mirror of a moving vehicle. �ese videos have the resolution of at least 1080p and frame rate of at least 10
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frames per second (FPS). To construct our dataset, we created 72 videos by varying both resolution and frame
rate of the downloaded videos. For each original video, the dataset includes six videos with di�erent resolutions,
i.e., 1080p and 720p, and frame rates, i.e., 1, 5, and 10FPS. Each video is about 10 minutes and the suspicious
vehicle, i.e., the vehicle that Amber Response aims to �nd, appears in a random time in the footage (i.e., for each
video, we randomly choose a single vehicle and add its speci�cations to the database of suspicious vehicles stored
on the Cloud). Based on our empirical results, Amber Response can accurately (with the accuracy of %100) detect
the abductor’s vehicle when the frame rate is equal to or greater than 1FPS. �erefore, in our evaluations, the
minimum frame rate is set to 1FPS.
Comparison: We �rst quantitatively evaluate three implementations of Amber Response (Cloud-based, SmartCore-
based, and Hybrid) using the above-mentioned dataset. �en, we brie�y describe how in-vehicle data processing
can enhance the user’s privacy in this application.
1. Performance: In order to compare the performance of the three implementations, we de�ne and report Detection
Time Ratio (i.e., DTR = Tdetect ion

Tappearance
) that represents how much time each implementation takes for processing

one second of the video until it �nds the abductor’s vehicle. �is metric enables us to estimate the delay in the
detection of the abductor’s vehicles in real-world scenarios: if the suspicious vehicle appears a�er Tappearance
seconds (from when the camera starts capturing the video), Amber Response detects it a�er Tappearance ∗ DTR.
Indeed, it reports the suspicious vehicle with a delay of Tappearance ∗ DTR − Tappearance seconds to the law
enforcement agency. For each implementation, the DTR highly depends on frame rate and resolution of the
video, and how much processing power is provided by SmartCore. Next, we examine how average DTR changes
with respect to these parameters.
Experimental scenario 1: In order to evaluate how DTR changes with respect to the frame rate, we examined
Amber Response using a subset of the videos (36 videos) in the dataset that have the same resolution (1080p)
and we ensured that SmartCore provides similar processing power for all these videos by manually enforcing its
CPU to work at 600MhZ (on Raspbian [16], this can be done by editing “con�g.txt” located at “/boot/con�g.txt”).
Fig. 4 demonstrates how DTR changes with respect to the frame rate for this experimental scenario. As the
frame rate increases (and consequently, the image processing algorithm becomes more computationally-heavy),
utilizing the Cloud for processing becomes more reasonable from performance perspective, whereas when the
frame rate is low (1FPS) all three implementations become similar from performance perspective even though
the computational power of SmartCore is much less than that of the Cloud.
Experimental scenario 2: Furthermore, to evaluate how DTR changes with respect to the resolution of the
video, we have repeated a similar experiment: we manually enforced the CPU to work at 600Mhz and used the
videos with 1FPS . Table 2 summarizes the results of this experiment. As expected, for each implementation, a
lower resolution video o�ers a be�er DTR.
A notable observation: As shown in Fig. 4, in the �rst experimental scenario, both Cloud-based and

SmartCore-based implementations outperformed the hybrid one. For hybrid implementation, Tdetect ion highly
depends on by how much time (i) on-SmartCore processing, (ii) SmartCore-to-Cloud data transmission, and (iii)
on-Cloud processing take. For videos with the resolution of 1080p, the hybrid version of Amber Alert spends a
signi�cant amount of time for on-SmartCore processing (Step 1 from Table 1 and color detection), and therefore,
it is slower than both SmartCore-based one (for which SmartCore-to-Cloud data transmission and on-Cloud
processing times are zero) and Cloud-based one (for which on-SmartCore processing time is negligible). However,
when the resolution of input videos is changed to 720p, the hybrid implementation outperformed the SmartCore-based
one (Table 2). In this experimental scenario, for the hybrid implementation, on-SmartCore processing takes
signi�cantly less time (compared to when the resolution of the input video is 1080p) so that it is reasonable
to shi� several steps of the plate detection algorithm (Step 2 to Step 8 from Table 1) to the Cloud despite the
additional time overhead associated with SmartCore-to-Cloud data transmissions.
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Fig. 4. DTR with respect to the frame rate: each point represents DTR for a single video from the dataset (lines show how
average DTR changes with respect to the frame rate).

Table 2. DTR with respect to the resolution (600 MhZ, 1FPS)

Resolution Cloud-based SmartCore-based Hybrid
1080p 6.8 8.0 11.88
720p 4.4 5.7 5.57

Experimental scenario 3: Eventually, in order to examine how the performance of di�erent implementations
may vary with changes in computational power, in another experimental scenario, we have manually overclocked
SmartCore’s CPU to run at 1200MhZ and repeated our examination using a subset of videos (with the resolution
of 720p and frame rate of 1FPS). Table 3 summarizes the results of this experiment. In this experimental scenario,
where the computational power of SmartCore is signi�cantly increased, SmartCore-based implementation
outperformed both hybrid and Cloud-based implementations, indicating that the additional time needed for
SmartCore-to-Cloud data transmissions and on-Cloud processing is more greater than performing all steps (Steps
1-8 in Table 1) on SmartCore.

Table 3. DTR for di�erent implementations (1200 MhZ, 720p, 1FPS)

Implementation DTR
Cloud-based 3.6
SmartCore-based 3.0
Hybrid 4.3

2. Cellular data usage: Using our real-world dataset, we have examined how much cellular data, on average, each
implementation has used for processing the 10-minute videos in the dataset. For both Cloud-based and hybrid
implementations, the data usage highly depends on both FPS (that speci�es the data transmission frequency)
and resolution of the video (that determines the size of each packet transmi�ed to the Cloud). Furthermore,
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for Hybrid implementation, the sparsity of the environment (e.g., how many vehicles are present in each video
frame) has an e�ect on the cellular data usage: in crowded areas, the hybrid implementation of the application
transmits more areas of interest to the Cloud. As shown in Table 4, the Cloud-based implementation consumes
the most cellular data among the three implementations, whereas the SmartCore-based one utilizes the least
(i.e., it only transmits the vehicle’s GPS coordinates to the Cloud upon the detection of an abductor’s vehicle).
Hybrid implementation o�ers 34.8X reduction in cellular data usage in comparison to the Cloud one, at the
cost of performing a lightweight algorithm on SmartCore. SmartCore-based implementation only occasionally
communicates with the Cloud (to receive the updated database of active Amber Alerts and send the location of
the vehicle upon the detection of a suspicious vehicle), however, it imposes signi�cant computational overhead
to SmartCore by locally processing all images.

Table 4. Cellular data usage (1FPS, 720p, 10 minutes)

Implementation Cellular data usage (MB)
Cloud-based 115.0
SmartCore-based 0.0
Hybrid 3.3

Note that the Cloud-based implementation, that can be also implemented using the previously-proposed Cloud-
based architectures described in Section 1, cannot be used in real-word scenarios due to its high cellular data usage.
For example, if the user only drives for one hour every day, it requires transmi�ing over 20 GBs of data every
month over cellular network (assuming the video is captured at frame rate=1FPS and resolution=720p). �is
imposes a signi�cant cost overhead to the user (currently, in the U.S., the cost is close to $100 per month for
20GBs).
3. Privacy leakage: Transmi�ing raw images captured from the vehicle to third-party servers, can potentially leak
signi�cant private information, including, but not limited to, the speci�cations of the vehicle (e.g., make, color,
and model), the area that the vehicle’s owner is travelling through, and the owner’s locations of interest or even
his identity (e.g., his face may be captured in some video frames when the Amber Response is running while the
vehicle is stopped and the user is walking in front of the camera). Performing in-vehicle image processing can
minimize the need of transmi�ing the raw data to the external servers, minimizing the private information leakage.
Among three implementations of Amber Response, from privacy perspective, the Cloud-based implementation is
the worst, whereas the SmartCore-based has the minimum information leakage (it does not transmit the raw
image at all and only shares the user’s location when it detects a suspicious vehicle in the surroundings). �e
hybrid version, that only transmits plate areas and removes other objects in the environment from the image,
also signi�cantly enhances the privacy of the user (in comparison to the Cloud-based version). However, based
on our empirical results, it might occasionally misdetect some other objects in the environment as plates and
transmit some inessential images, that can be potentially processed to reveal the user’s location (e.g., images of
logos and �yers), along with images of interest (i.e., images that only contain plates of nearby vehicles).

5.2 Application 2: Insurance Monitor
Usage-based (also referred to as Pay-As-You-Drive) insurance policies are envisioned as the future of auto
insurance [49]. Several insurance companies worldwide (for example, MetroMile [11]) have already introduced
new low-rate insurance plans for which they take traveling mileage, along with the driver’s behaviors, into
account. �ey currently collect the required information (for example, the vehicle’s speed and odometer readings)
from a dongle that plugs into the vehicle. Moreover, they commonly collect other types of data from the OBD
port, including various diagnostic messages.

, Vol. 1, No. 1, Article 1. Publication date: September 2017.



1:18 • A. Mosenia et al.

Despite the potential bene�ts that insurance dongles have o�ered, their usage is currently limited due to
privacy concerns and security threats. Gao et al. [29] have shown that vehicle’s location can be easily tracked by
processing the vehicle’s speed data. Furthermore, security researches [6, 9, 17] have discussed common security
vulnerabilities of third-party dongles and demonstrated real-world life-threatening security a�acks. For example,
Foster et al. [6] have exploited security vulnerabilities of an insurance dongle (used by MetroMile [11]) to send
arbitrary unauthorized messages to the OBD port. �ey constructed an end-to-end security a�ack, highlighting
the potential seriousness of existing security �aws.

A few solutions have been discussed in the literature to address the privacy/security issues associated with the
use of insurance dongles [32, 49]. Such solutions commonly require a design change in the hardware (insurance
dongle) or back-end infrastructures (insurance servers). �ey impose signi�cant extra costs to companies due to at
least one of the two following reasons. First, insurance companies already have millions of active dongles in the
market and changing the whole infrastructure (including dongles and servers) is very di�cult (if not impossible).
Second, to minimize design costs, insurance companies commonly use generic OBD dongles that are available
from third-party companies, however, the proposed solutions require new dongles that are speci�cally designed
for insurance companies. �us, insurance companies are unwilling to incorporate these solutions into their in-use
scheme.

Based on ProCMotive, we design and develop an application that enables security/privacy-friendly usage-based
insurance, while imposing no design change (and consequently, no additional cost) to the insurance company.
On the user side, the proposed application utilizes the access control scheme o�ered by SmartCore to ensure
that the dongle only performs its intended activities, preventing security a�acks and minimizing the privacy
leakage. Moreover, it uses the port management capability provided by SmartCore, along with data manipulation
techniques, to remove inessential sensitive data from the raw data requested by the insurance dongle while
maintaining the similar utility.

5.2.1 Implementation. �is application uses port management API o�ered by SmartCore, along with the
access control scheme, to address the above-mentioned a�acks: (i) it prevents security threats enabled by sending
arbitrary messages from vulnerable insurance dongles (e.g., [9, 17]), and (ii) address the a�ack against location
privacy in which the insurance company can continuously track the user (e.g., [29]), as described next.
Preventing security threats: Previous research studies [6, 9, 17] have shed lights on one common security
vulnerability of third-party dongles: dongles can be enforced (either remotely over the cellular network or within
a short distance over Bluetooth connection) to send arbitrary messages to the OBD port. �is vulnerability can
potentially o�er a direct access to several vital components and systems in the vehicle, enabling the a�acker to
perform various life-threatening a�acks, ranging from remotely controlling the braking system [6] to launching
DoS a�ack against various built-in systems [35].

Such a�acks are feasible since OBD port, which has been originally designed for diagnosis, has two main
limitations. First, it does not o�er any security scheme to distinguish authorized messages from unauthorized
ones, assuming that every OBD-connected dongle is trusted and is allowed to transmit all requests and access all
components. Second, it utilizes a very simple congestion control protocol that always prioritize the messages
with lower PIDs over others. �is congestion protocol makes DoS a�ack against OBD easy: the a�acker can only
send packets with lowest possible PID (commonly, PID = 00) to the OBD port at a high frequency [35].

To address above-mentioned a�acks, Insurance Monitor ensures that (i) the dongle can transmit a set of
expected requests (i.e., data request that are essential for usage-based insurance) and (ii) the rate of request
generated by the dongle always remains below a reasonable threshold. �is threshold can be predetermined by
examination of an insurance dongle in a trusted environment (based on our empirical results, for MetroMile
dongle this threshold can be set to one request per second).
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Upon the a�achment of the insurance dongle, using the Android application that we have developed to o�er
a user-friendly interface, the user can choose his insurance company. On SmartCore, the appropriate access
control �le will be automatically created (using access control API), and an upper bound will be set for the rate of
requests that the dongle can generate (using port management API).
Addressing the attack against location privacy: Using port management API, the proposed application �rst
captures packets from a third-party OBD dongle and forwards it to the vehicle. It then gets the response from the
vehicle and modi�es its data �eld using privacy-preserving functions in such a way that the insurance company
can still get similar utility (e.g., can correctly compute the number of times the user has speeding violation).
Eventually, it sends the modi�ed response to the dongle. Di�erent privacy-preserving functions can be used to
minimize the information leakage, in particular, data shu�ing, noise addition, and rounding techniques [28, 50]
have been extensively discussed in the literature. Using these techniques, in the prototype implementation of
Insurance Monitor, we have implemented three privacy preserving algorithms.

(1) Alg. 1: Shu�ing: Given a window sizeW , this algorithms aggregatesW speed samples (V = {Vi , ...,Vw })
and returns a random permutation of them (V ∗).

(2) Alg. 2: Rounding and then shu�ing: Given a windows sizeW , for each sample of the vehicle’s speed Vi ,
this algorithm �rst rounds Vi (to the nearest integer, nearest �ve, or nearest ten), then aggregates and
shu�esW of them, and eventually returns the set V ∗.

(3) Alg. 3: Noise addition: For each sample of the vehicle’s speed Vi , this algorithm picks a �oat number
Zi drawn from a uniform distribution with the range of Runif orm , i.e., 0 < Zi < Runif orm , and returns
V ∗i = Vi + Zi .

Next, we demonstrate how each of these algorithms enhance the privacy of the user and a�ect the utility.

5.2.2 Evaluation. To verify that Insurance Monitor can address security and privacy a�acks discussed earlier,
we �rst implemented two known security a�acks (the a�ack that enables an a�acker to send arbitrary message
[6] and a DoS a�ack [35]) and the privacy a�ack that uses speed data to track the user (Elastic Pathing [29]), and
con�rmed that both a�acks work when Insurance Monitor is not active. We then examined if/how Insurance
Monitor can address these a�acks. We observed that when Insurance Monitor is active it only allows the Insurance
dongle to read speed data and odometer data and actively blocks all other types of request. �is limitation,
which is imposed by Insurance Monitor on the dongle, completely prevents the �rst security a�ack, however, the
a�acker might still try to launch DoS by sending the allowed requests with a high frequency. We also observed
that Insurance Monitor correctly regulates the rate of requests, i.e., it puts requests generated by the dongle in a
queue and only transmits one request to the vehicle every second. �is completely addresses the second security
a�ack.

In order to examine how e�ectively the privacy-preserving algorithms implemented in the prototype version
of Insurance Monitor can address Elastic Pathing [29], we examined how the accuracy of the a�ack, i.e., the
distance between the estimated destination and the actual destination divided by the actual travelled distance
reduces, and a speed-related utility required for the usage-based policy degrades when Insurance Monitor exploits
privacy-preserving algorithms. �e speed-related utility is de�ned as the number of times that the speed is above
a certain threshold. In our experiments, we set the speed threshold to 25mph, i.e., we assume that the insurance
company intends to know how many times the vehicle’s speed exceeded 25mph and we utilized the database
provided in [29] that includes several streams of a vehicle’s speed collected from real-world driving traces.

It is desired that Insurance Monitor reduces the accuracy of the a�ack, while maintaining the utility. Fig 5
shows both accuracy of the a�ack and utility degradation (i.e., the di�erence between computed utility based
on the modi�ed data and actual utility divided by the actual utility) for three algorithms discussed above. Fig
5 (a) demonstrates how windows sizeW a�ects both utility and a�ack accuracy when Alg. 1 is used. Fig 5 (b)
shows how both window sizeW and rounding precision a�ect utility and a�ack accuracy when Alg. 2 is utilized.
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Eventually, Fig 5 (c) demonstrates the accuracy of a�ack and utility degradation with respect to the range of the
uniform distribution (Runif orm ) for Alg. 3. Based on our experimental results, Algs. 1 and 2 slightly decrease the
accuracy of the a�ack (or equivalently, enhance the user’s privacy), whereas Alg. 3 can signi�cantly reduce the
accuracy of the a�ack with minimal utility degradation.
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Fig. 5. Accuracy of the privacy a�ack (Elastic Pathing [29]) and utility degradation when privacy-enhancing algorithms
(Algs. 1,2, and 3) are used.

5.2.3 Summary. Table 5 highlights the advantages of ProCMotives for two above-mentioned vehicular appli-
cations.

Comparing SmartCore-enabled (SmartCore-based and hybrid) implementations of Amber Response to its
Cloud-based implementation (the baseline) demonstrates that they signi�cantly reduce cellular data usage,
enhance user privacy, and are more resilient against the potential unavailability of wireless connectivity while
they can provide promising performance results. As demonstrated earlier, although we have utilized a very
powerful Cloud server (with 8 CPUs and 32GBs of RAM), performance results provided by SmartCore-enabled
implementations are comparable to the Cloud-based implementation for low frame rates. In particular, with video
inputs captured at 1FPS, the SmartCore-based version of Amber Response can accurately (with the accuracy of
%100) detect the abductor’s vehicle even faster than Cloud-based version (Table 3).
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Furthermore, Insurance Monitor can provide several bene�ts for already-in-use usage-based insurance policies
(the baseline). In particular, it can prevent several security a�acks and signi�cantly enhance the privacy of the
vehicle’s owner while maintaining the utility needed by insurance policies.

Table 5. Comparison of ProCMotive-enabled implementations with their baselines

Applications Privacy Security Performance Cellular data usage Resiliency against
connection unavailability

Amber Res. (SmartCore) ↑↑ N/A Similar ↓↓ ↑↑
at 1FPS

Amber Res. (Hybrid) ↑ N/A Similar ↓ Similar
at 1FPS

Insurance Monitor ↑ ↑ N/A Similar Similar

6 RELATED WORK
�e emergence of the IoT paradigm has led to an exponential increase in the number of Internet-connected
sensing and computing objects, and in particular, has provided the opportunity to transform an isolated vehicle
into an Internet-connected smart object [45]. Several recent publications have discussed potential bene�ts that
Cloud-based services can provide for Internet-connected vehicles and proposed novel architectures [23, 36, 51] to
enable Cloud-based services for future vehicles. Furthermore, many researchers and developers have investigated
novel Cloud-enabled vehicular applications [31, 33, 37, 40, 53]. For example, Ji et al. [33] have proposed a Cloud-
based car parking system that aims to �nd the nearest available car parking lot by processing the data collected
from nearby vehicles on the Cloud. Meseguer et al. [40] have implemented a Cloud-based smartphone-assisted
system that continuously analyzes drivers’ behaviors using a neural network.

In addition to Cloud-based services, di�erent smartphone-based applications have been developed for diagnostic
purposes [21] (e.g., �nding a faulty unit), controlling the vehicle’s basic components [34] (e.g., locking/unlocking
doors), and assessing the driver’s behaviors [25].

Despite the existence of several proposal for development of vehicular applications in the literature, there is
still a signi�cant challenge that hinders their deployment: the majority of already-in-market vehicles have limited
resources and communication capabilities and rarely support programability. Furthermore, as described earlier in
Section 2.1, mission-critical operations cannot be implemented on the Cloud or nearby personal devices due to
connectivity and reliability issues. ProCMotive provides an interoperable approach to shi� computational/storage
resources from the Cloud to the vehicle, considering several shortcomings of previous approaches and di�erent
domain-speci�c design goals. Its unique approach imposes no design change on vehicles, and therefore, can
potentially facilitate rapid development and deployment of new vehicular applications.

7 CONCLUSION
In this paper, we presented a reference architecture that potentially enables rapid development of various vehicular
applications. �e architecture is formed around a core component, called SmartCore, a privacy/security-friendly
programmable dongle that o�ers in-vehicle computational and storage resources and hosts applications.

Based on the reference architecture, we developed an application development framework for vehicles, that
we call ProCMotive. To highlight potential bene�ts that ProCMotive o�ers, we proposed and developed two new
vehicular applications based on ProCMotive, namely, Amber Response and Insurance Monitor. We evaluated
these applications using real-world data and compared them with state-of-the-art technologies.
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ProCMotive enables application developers and researchers, who are interested in proposing and examining
vehicular applications, to rapidly design, prototype, and evaluate novel applications for vehicles.
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